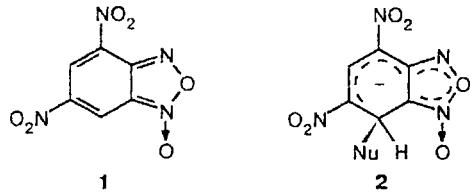
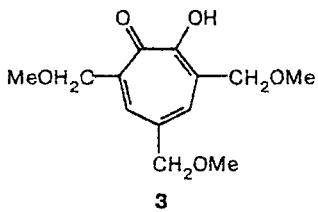


Dipolar spirocyclic σ -complexes based on 4,6-dinitrobenzofuroxan

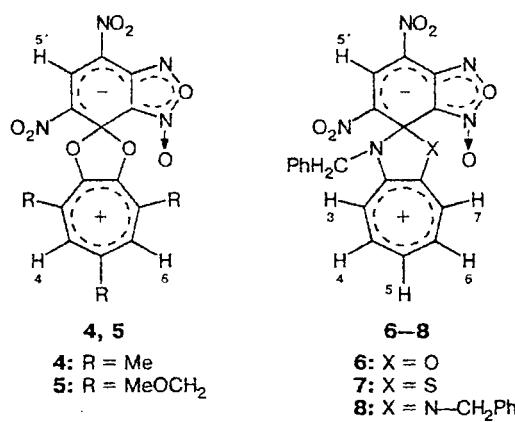

S. V. Kurbatov,^{a*} Z. N. Budarina,^b G. S. Vasilyeva,^a N. I. Borisenko,^a A. P. Knyazev,^a V. I. Minkin,^b Yu. A. Zhdanov,^a and L. P. Olekhovich^a

^aRostov State University, Department of Chemistry,
7 ul. Zorge, 344090 Rostov-on-Don, Russian Federation.
Fax: 007 (863 2) 64 5255. E-mail: root@chimfak.rnd.runnet.ru
^bInstitute of Physical Organic Chemistry, Rostov State University,
194/2 ul. Stachki, 344090 Rostov-on-Don, Russian Federation.
Fax: 007 (863 2) 28 5667

The first dipolar spiro- σ -complexes with a superelectrophilic dinitrobenzofuroxan fragment and tropolone systems with diastereotopic substituents were synthesized. The kinetics of their enantiotopomerization, which occurs *via* cleavage—formation of the C_{spiro}—heteroatom bond, was studied by dynamic ¹H NMR. The stereorrigidity of dinitrobenzofuroxan spiro-complexes in this degenerated process increases in the series: tropolone < aminotropone << aminothiopropone \approx aminotroponeimine. The two last possess the highest kinetic stability compared to all known zwitterionic spiro-complexes.


Key words: tropolone, 4,6-dinitrobenzofuroxan, dipolar spiro- σ -complexes, enantiotopomerization.

It is known that 4,6-dinitrobenzofuroxan (DNBF) (1) with O-,¹ N-,² S-,³ and C-nucleophiles⁴ readily forms anionic σ -complexes of the Meisenheimer type (2).



Their unique stability (approximately 10 orders of magnitude higher than that of similar derivatives of trinitrobenzene)⁴ is explained by the high electron-deficiency of DNBF 1, which is usually considered as a "superelectrophile".⁵

However, zwitterionic spirocyclic σ -complexes based on DNBF are unknown so far. One of the most convenient reagents for constructing such compounds is tropolone, *e.g.*, 3 or its heteroanalogs, which have optimal geometry of an active fragment and are able to effectively delocalize a positive charge formed.⁶

In the present work, spiro- σ -complexes (4–8) were synthesized by reactions of thallium salts of tropolones and aminotropones with 7-chloro-4,6-dinitrobenzofuroxan.

Compounds 4–8 are stable intermediates of reactions, *e.g.*, of intramolecular aromatic nucleophilic substitution of the 6A \rightleftharpoons (R)-6 \rightleftharpoons 6C type (Scheme 1).

The spirocyclic structure of compounds 4–8 has been reliably confirmed by ¹H NMR spectra: the proton signals of the tropolone ring are significantly shifted downfield (>1 ppm), as in the case of other dipolar spirocomplexes,^{7,8} compared to the initial tropolone and its heteroanalogs or to known O,N-aryl and heteraryl

Scheme 1

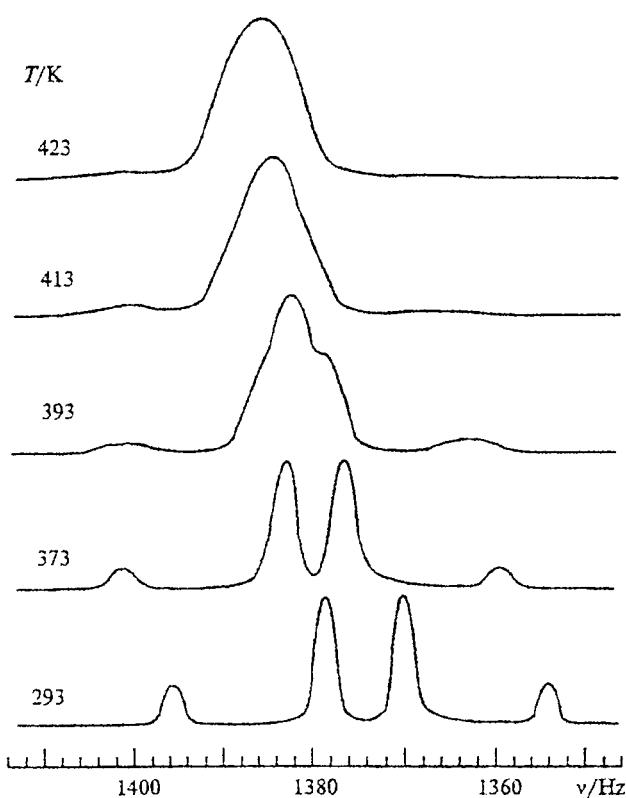
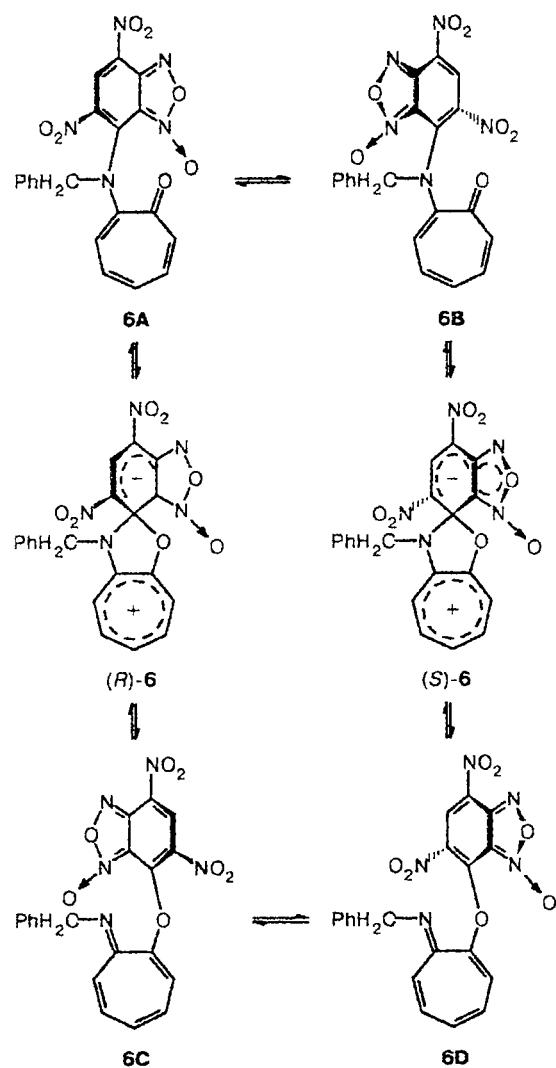



Fig. 1. Temperature dependence of the line shape of proton signals ($\text{C}(3)\text{H}_2 + \text{C}(7)\text{H}_2$) of compound 5 (300 MHz).

tropolone derivatives, open-chain isomers of the **6A** type.⁷ This indicates a considerable separation of charge between tropylum and benzofuran fragments of the molecules of **4–8**. The thermodynamic stability of zwitterions **5–8** with a stereogenic spirocarbon center is evidenced by the presence of AB-quartets of diastereotopic methylene protons of the MeOCH_2 (**5**) and PhCH_2N groups (**6–8**) in the ^1H NMR spectra (Fig. 1, Table 1).

A diastereotopic label in the neighborhood of a chiral or prochiral spirocenter⁹ allows one to investigate enantiotopomerization **(R)-6 \rightleftharpoons (S)-6** (see Scheme 1) occurring through dissociation–recombination of carbon–heteroatomic spirobonds, using dynamic ^1H NMR spectroscopy.¹⁰ One can conclude from the analysis of data given in Table 2 that kinetic and activation parameters of degenerated stereoconversion of the tetrahedral spirocenter strongly depend on the type of

heteroatoms bonded with this center. Thus, replacing one of oxygen atoms of spiro-complex **5** by the PhCH_2N group increases the activation barrier of the process **(R)-6 \rightleftharpoons (S)-6** by almost 15 kJ mol^{-1} , while replacing two oxygen atoms by more nucleophilic N and S atoms decelerates the enantiotopomerization of compounds **7, 8** to such an extent that it is not observed at all in the time scale of dynamic ^1H NMR spectroscopy. Dipolar spirocycles (which are close in structure to compounds **6–8**) that contain⁹ 2,4-dinitrophenyl and 3,5-dinitropyridyl fragments instead of 4,6-dinitrobenzofuran one are much less stereorigid. Under the same conditions, the rate of their stereoconversion is 7–10 orders of magnitudes higher than that of compounds **6–8**, which confirms the superelectrophilic properties of DNBF and the unique stability of spiro- σ -complexes based on it.

Experimental

The ^1H NMR spectra were recorded on a Varian Unity-300 instrument (300 MHz) with tetramethylsilane as the internal standard. Kinetic and activation parameters of rearrangements were determined by analyzing the temperature dependence of the shape of lines of methylene groups in the ^1H NMR spectra (see Fig. 1) using computer simulation of a shape of the line of the indicator proton on a Varian-620L

Table 1. The parameters of the ^1H NMR spectra of the compounds synthesized

Compound	Solvent	^1H NMR, δ , J/Hz
3	Aceton-d ₆	7.68 (s, 2 H, H(4,6)); 4.49 (s, 4 H, C(3,7)H ₂); 4.38 (s, 2 H, C(5)H ₂); 3.38 (s, 6 H, MeO(3,7)); 3.30 (s, 3 H, MeO(5))
4	CDCl ₃	9.19 (s, 1 H, H(5')); 8.20 (s, 2 H, H(4,6)); 2.86 (s, 3 H, Me(5)); 2.69 (s, 6 H, Me(3,7))
5	CDCl ₃	9.15 (s, 1 H, H(5')); 8.81 (s, 2 H, H(4,6)); 4.82 (s, 2 H, C(5)H ₂); 4.74 (d, 2 H, C(3,7)H ₂); 4.66 (d, 2 H, C(3,7)H ₂ , $J_{\text{CH}_2\text{HH}} = 14.4$); 3.60 (s, 3 H, Me(5)O); 3.58 (s, 6 H, Me(3,7)O)
	C ₆ D ₅ Br	9.38 (s, 1 H, H(5')); 8.60 (s, 2 H, H(4,6)); 4.67 (d, 2 H, C(3,7)H ₂); 4.56 (d, 2 H, C(3,7)H ₂ , $J_{\text{CH}_2\text{HH}} = 18.0$); 4.28 (s, 2 H, C(5)H ₂); 3.43 (s, 6 H, Me(3,7)O); 3.38 (s, 3 H, Me(5)O)
6	DMSO-d ₆	8.80 (s, 1 H, H(5')); 8.40 (dd, 1 H, H(4)); 8.32 (d, 1 H, H(3)); 8.20 (dd, 1 H, H(6)); 7.90 (d, 1 H, H(7)); 7.81 (dd, 1 H, H(5), $J_{3,4} = 11.5$, $J_{4,5} = 10.8$, $J_{5,6} = 10.8$, $J_{6,7} = 11.5$); 7.1–7.2 (m, 5 H, Ph); 5.32 (d, 1 H, CH ₂); 4.66 (d, 1 H, CH ₂ , $J_{\text{CH}_2\text{HH}} = 18.0$)
7	DMSO-d ₆	8.74 (s, 1 H, H(5')); 8.35 (d, 1 H, H(3)); 8.11 (dd, 1 H, H(4)); 7.86 (dd, 1 H, H(6)); 7.82 (d, 1 H, H(7)); 7.68 (dd, 1 H, H(5), $J_{3,4} = 10.8$, $J_{4,5} = 10.5$, $J_{5,6} = 10.5$, $J_{6,7} = 11.5$); 7.05–7.25 (m, 5 H, Ph); 5.12 (d, 1 H, CH ₂); 4.74 (d, 1 H, CH ₂ , $J_{\text{CH}_2\text{HH}} = 18.0$)
8	DMSO-d ₆	8.79 (s, 1 H, H(5')); 7.92 (dd, 2 H, H(4,6)); 7.68 (d, 2 H, H(3,7)); 7.34 (dd, 1 H, H(5)); 7.0–7.2 (m, 10 H, 2 Ph); 5.03 (d, 2 H, 2 CH ₂); 4.47 (d, 2 H, 2 CH ₂ , $J_{\text{CH}_2\text{HH}} = 17.0$)

Table 2. The kinetic and activation parameters of the enantiotopomerization of compounds 5–8

Compound	Solvent	k_{298} /s ⁻¹	ΔG°_{298} /kJ mol ⁻¹	ΔH° /kJ mol ⁻¹	ΔS° ·deg ⁻¹	Kinetic parameters		
						k_{298} /s ⁻¹	ΔG°_{298} /kJ mol ⁻¹	ΔH° /kJ mol ⁻¹
5	C ₆ D ₅ Br	$1.7 \cdot 10^{-2}$	83.0	58.2	-20.0			
6	DMSO-d ₆	$5.0 \cdot 10^{-5}$	97.6	97.6	0.0			
7	DMSO-d ₆	$<10^{-9}$	>110	—	—			
8	DMSO-d ₆	$<10^{-9}$	>110	—	—			

computer. Melting points, yields, and data of elemental analysis are given in Table 3. The solvents used were purified according to standard procedures.

3,5,7-Tris(methoxymethyl)tropolone (3). A mixture of 3,5,7-tris(hydroxymethyl)tropolone¹¹ (6.36 g, 0.03 mol), Me₂SO₄ (14 mL, 0.15 mol), 50 mL of 50% aqueous KOH solution, 50 mL of CH₂Cl₂, and triethylbenzylammonium chloride (0.7 g, 10 mol. %) was stirred vigorously at ~20 °C for 12 h. The mixture was then poured into 200 mL of ice water, acidified with AcOH to pH 4–5, and extracted with ether (3×50 mL). The extract was washed with water, dried with anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel 40/100, CHCl₃) and recrystallized from petroleum ether.

Dipolar spirocomplex 4. A mixture of the thallium salt of 3,5,7-trimethyltropolone¹¹ (0.2 g, 0.55 mmol) obtained according to the known procedure,¹² 7-chloro-4,6-dinitrobenzofuroxan¹³ (0.14 g, 0.5 mmol), and 10 mL of toluene was refluxed for 1 h. After cooling, the precipitate containing the reaction product and TiCl was filtered off. Three mL of CHCl₃ was added, and TiCl was separated by filtration. Yellow crystals of 4 were isolated from the filtrate by chromatography (silica gel 40/100, CHCl₃).

Dipolar spirocomplex 5. A mixture of the thallium salt of 3,5,7-tris(methoxymethyl)tropolone 3 (0.25 g, 0.55 mmol) obtained according to the known procedure,¹² 7-chloro-4,6-dinitrobenzofuroxan (0.145 g, 0.55 mmol), and 10 mL of MeCN was refluxed for 0.5 h. The precipitate of TiCl was

Table 3. The characteristics of compounds 3–8

Compound	Yield (%)	M.p. /°C	Found Calculated (%)			Molecular formula
			H	N	C	
3	33	92	61.20 61.41	7.18 7.13	— —	C ₁₃ H ₁₈ O ₅
4	35	260–263 (decomp.)	49.65 49.49	3.07 3.12	14.26 14.43	C ₁₆ H ₁₂ N ₄ O ₈
5	75	186–188 (decomp.)	48.02 47.77	3.68 3.79	11.50 11.71	C ₁₉ H ₁₈ N ₄ O ₁₁
6	40	277–280 (decomp.)	55.42 55.18	3.14 3.01	15.87 16.09	C ₂₀ H ₁₃ N ₅ O ₇
7	85	302–305 (decomp.)	53.10 53.22	2.74 2.90	15.67 15.51	C ₂₀ H ₁₃ N ₅ O ₆ S
8	90	308–310 (decomp.)	61.72 61.83	3.53 3.84	16.30 16.02	C ₂₇ H ₂₀ N ₆ O ₆

separated by filtration, and the filtrate was concentrated *in vacuo*. The residue was purified twice by column chromatography (silica gel 40/100, MeCN–CHCl₃, 1 : 6).

Dipolar spirocomplex 6. A mixture of 7-chloro-4,6-dinitrobenzofuroxan (0.1 g, 0.4 mmol), 2-benzylaminotropone (0.08 g, 0.4 mmol),¹⁴ and 5 mL of MeCN was refluxed for 0.5 h. After cooling, the crystals formed were separated by filtration and dissolved in 1 mL of DMSO, and the solution was poured into 10 mL of ice water. A yellow precipitate obtained was purified by column chromatography (Al₂O₃, CHCl₃).

The general procedure of the synthesis of spirocomplexes 7 and 8. A solution of 7-chloro-4,6-dinitrobenzofuroxan (0.04 mmol) and benzylaminothiopropone (0.08 mmol) or *N,N'*-dibenzylaminotropone¹⁵ in 0.5 mL of CHCl₃ was applied as a narrow band onto the start line of a wide chromatographic plate with Al₂O₃. After 12 h, the reaction mixture was separated on the same plate in CHCl₃. After CHCl₃ was evaporated, an orange zone was collected, and the product was eluted with CHCl₃. Crystals obtained upon evaporation of CHCl₃ were washed with a minimal amount of benzene.

This work was financially supported by the Russian Foundation for Basic Research (Project Nos. 96-03-33902 and 96-03-32024).

References

1. R. J. Spear, W. P. Norris, and R. W. Read, *Aust. J. Chem.*, 1983, **36**, 297.
2. A. J. Boulton and D. P. Clifford, *J. Chem. Soc.*, 1965, 5414.
3. M. J. Strauss, A. De Fusco, and F. Terrier, *Tetrahedron Lett.*, 1981, **22**, 1945.
4. F. Terrier, E. Kizilian, J.-Cl. Halle, and E. Buncel, *J. Am. Chem. Soc.*, 1992, **114**, 1740.
5. V. N. Drozd and V. N. Knyazev, *Zh. Org. Khim.*, 1995, **31**, 3 [*Russ. J. Org. Chem.*, 1995, **31** (Engl. Transl.)].
6. V. I. Minkin, L. P. Olekhnovich, and Yu. A. Zhdanov, *Molecular Design of Tautomeric Compounds*, Reidel Dordrecht, Boston—Tokyo, 1988.
7. L. P. Olekhnovich, S. V. Kurbatov, A. V. Lesin, Z. N. Budarina, Yu. A. Zhdanov, and V. I. Minkin, *Zh. Org. Khim.*, 1991, **27**, 6 [*J. Org. Chem. USSR*, 1991, **27** (Engl. Transl.)].
8. S. V. Kurbatov, Z. N. Budarina, L. P. Olekhnovich, N. G. Furmanova, A. V. Lesin, O. E. Kompan, L. M. Yagupol'skii, V. I. Minkin, and Yu. A. Zhdanov, *Zh. Org. Khim.*, 1988, **24**, 913 [*J. Org. Chem. USSR*, 1988, **24** (Engl. Transl.)].
9. L. P. Olekhnovich, Z. N. Budarina, A. V. Lesin, S. V. Kurbatov, G. S. Borodkin, and V. I. Minkin, *Mendeleev Commun.*, 1994, 162.
10. S. Toyota and M. Oki, *Bull. Chem. Soc. Jpn.*, 1991, **64**, 1563.
11. T. Nozoe, T. Mikai, and K. Takase, *Science Rep. Tohoku Univ.*, 1952, **36**, 40; *Chem. Abstrs.*, 1954, **48**, 3964d.
12. L. P. Olekhnovich, S. V. Kurbatov, Z. N. Budarina, V. I. Minkin, and Yu. A. Zhdanov, *Zh. Org. Khim.*, 1985, **21**, 2550 [*J. Org. Chem. USSR*, 1985, **21** (Engl. Transl.)].
13. W. P. Norris and R. J. Spear, *Heterocycles*, 1984, **22**, 271.
14. N. Soma, J. Nakazawa, T. Watanabe, Y. Sato, and G. Sunagawa, *Chem. Pharm. Bull. (Tokyo)*, 1965, **13**, 457.
15. C. E. Forbes and R. H. Holm, *J. Am. Chem. Soc.*, 1970, **92**, 2297.

Received February 11, 1997